← PC版は別頁

== 近似式 ==

○ 接線の方程式

点(a,b) を通り、傾き m の直線の方程式は

$$y-b = m(x-a) \cdots (1)$$

だから, 曲線 y = f(x) 上の点 (a, f(a)) における接線の方程式は, (1)において, m = f'(a), b = f(a) とおいて

$$y-f(a) = f'(a)(x-a) \cdots (2)$$

もしくは

$$y=f(a)+f'(a)(x-a) \cdots (3)$$

右図1のように、「接線のy座標」は、x=aのとき「曲線のy座標」と完全に一致するが、xがaに近い値をとるときは、その近似値となっている。

すなわち,

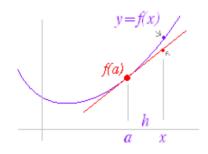
$$f(x) = f(a) + f'(a)(x-a) \cdots (4)$$

x-a=h とおくと, (4)は,

$$f(a+h) = f(a) + f'(a)h \cdots (5)$$

と書くこともできる.

図1



○ 1次の近似式

x がa に十分近い値をとるとき,

$$f(x) = f(a) + f'(a)(x-a) \cdots (4)$$

h が0 に十分近いとき

$$f(a+h) = f(a) + f'(a)h \cdots (5)$$

特に, a=0 のとき

$$f(x) = f(0) + f'(0)x \cdots (6)$$

これらの式を関数 f(x) の 1 次の近似式という.

솅

$$f(x)=(1+x)^2$$
 のとき $f'(x)=2(1+x)$ だから, $f'(0)=2$ x が 0 に十分近い値をとるとき $f(x) = f(0) + f'(0)x = 1 + 2x$

正確な値, $f(x)=(1+x)^2=1+2x+x^2$ と比較すると, x=0.1 ならば $x^2=0.01$ となり, その差はほとんど無視できるほど 小さい.

例と答

(1) x = 0 のとき, $f(x) = \sin x$ の 1 次の近似式を求め よ.

(答案) f(0)=0 $f'(x)=\cos x$, f'(0)=1だから f(x) = 0+1x=x

(2) x = 0 のとき, $f(x) = \sqrt{I+x}$ の1次の近似式を求めよ.

(答案)

$$f(0)=1$$

$$f'(x) = \frac{1}{2}(1+x)^{-\frac{1}{2}}$$
 , $f'(0) = \frac{1}{2}$
 $f(x) = \frac{1}{2}$

(3) 1次の近似式を用いて,次の値の近似値を求めよ.

 1.01^{-5}

(答案)

$$f(x)=(1+x)^{-5}$$
 とおく,
 $f'(x)=-5(1+x)^{-6}$
 $x = 0$ のとき,
 $f(x) = f(0)+f'(0)x=1-5x$
 $f(0.01) = 1-5 \times 0.01=0.95$

短答問題

(1) x = 0 のとき, $f(x) = \log(1+x)$ の 1 次の近似式を求め, これを利用して $\log 1.01$ の近似値を求めよ.

log 1.01≒

Check Reset help

(2)

x = 0 のとき, $f(x) = \tan x$ の 1 次の近似式を求め, これを利用して $\tan \frac{\pi}{30}$ の近似値を求めよ.

ただし, π =3.1416 とし, 結果は小数第3位まで求めよ.

$$\tan \frac{\pi}{30} =$$

Check Reset help

(3)

x = 0 のとき, $f(x) = \sqrt[3]{1000 + x}$ の 1 次の近似式を求め,これを利用して $\sqrt[3]{1001}$ の近似値を求めよ.(小数第3位まで)

³√1001 ≒

Check Reset help

○ 2次の近似式

(5)式はh が θ に十分近いときh の1次式で近似式を表わしたものとなっている

$$f(a+h) = f(a) + f'(a)h \cdots (5)$$

目的に応じてさらに詳しい近似式がほしいときは、hの2次式,3次式,…と次数を高くしていくとより精度の高い近似式が得られる.

$$x$$
 が a に十分近い値をとるとき,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 \cdots (7)$$

hが0に十分近いとき

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2$$
 …(8) $a=0$ のとき

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 \cdots (9)$$

これらの式を関数 f(x) の2次の近似式という.

(解説)

h が0 に十分近いとき

$$f(a+h) = \alpha + \beta h + \gamma h^2 = g(a+h)$$

とおくと,

$$\beta + 2 \gamma h = g'(a+h)$$

 $2 \gamma = g''(a+h)$

$$h=0$$
 のとき, $f(a)=g(a)$ ···(*1)

$$h=0$$
 のとき, $f'(a)=g'(a)$ ···(*2)

$$h=0$$
 のとき, $f''(a)=g''(a)$ ···(*3)

を条件とすると,

(*1)より, a =f(a)

(*2)より, β =f'(a)

(*3)より,
$$\gamma = \frac{f''(a)}{2!}$$

※ 一般に, $a_n x^n$ をn 回微分すると $n! a_n$ となる.

○ テイラーの定理

x がa に十分近い値をとるとき,

$$f(x)=f(a)+f'(a)(x-a)+rac{f''(a)}{2!}(x-a)^2 + \dots +rac{f'^{(n)}(a)}{n!}(x-a)^n + R_n$$
 (n 次導関数を $f^{(n)}(x)$ で表わす.)

$$h$$
 が 0 に十分近いとき $f(a+h)=f(a)+f'(a)h+\frac{f''(a)}{2!}h^2+...+\frac{f^{(n)}(a)}{n!}h^n+R_n$

これをテイラーの定理という. (R_n は近似式と真の値と の誤差)

右辺を無限級数(数列の和の極限)にしたもの(このと き $R_n \to 0$ となる)をテイラー展開という.

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^{2} + \dots + \frac{f''(a)}{n!}(x-a)^{n} + \dots$$

$$f(a+h)=f(a)+f'(a)h+\frac{f''(a)}{2!}h^2...+\frac{f^{(n)}(a)}{n!}h^n+\cdots$$

テーラーの定理, テイラー展開において, 特にa=0 の 場合は、マクローリンの定理、マクローリン展開と呼ば れる.

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{-(n)}(0)}{n!}x^n + R_n$$

$$f(x) = f(0) + f'(0)x + \frac{f^{-(n)}(0)}{2!}x^2 + \dots + \frac{f^{-(n)}(0)}{n!}x^n + \dots$$

※ テイラー展開,マクローリン展開ともに,「無限級数が 収束するようなx またはh の値の範囲」を吟味する必要が あるが, ここではh またはx が十分 θ に近く, 収束する範 囲内にある場合を扱っている.

例と答

(1) $f(x)=e^x$ のマクローリン展開を求めよ.

$$f'(x)=e^x$$
, $f''(x)=e^x$, ..., $f^{(n)}(x)=e^x$ ($y^{(n)}$ は n 次導関数)
$$f(0)=1, \ f'(0)=1, f''(0)=1, ..., f^{(n)}(0)=1$$
 だから
$$e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}+...$$
 $x=1$ を代入すると,
$$e=1+1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}+...$$

(2) $f(x) = \sin x$ のマクローリン展開を求めよ.

$$f'(x) = \cos x$$
, $f''(x) = -\sin x$, …
 $f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, -1 , 0 , ,…
(4回微分するごとに巡回する.)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

(3) $f(x) = \cos x$ のマクローリン展開を求めよ.

$$f'(x) = -\sin x , f''(x) = -\cos x , \cdots$$

 $f(0) = 1, f'(0) = 0, f''(0) = -1, 0, \cdots$
(4回微分するごとに巡回する.)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$